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Abstract—The open and royalty free nature as well as the
extendable design of the RISC-V Instruction Set Architecture
(ISA) has lead to a sprawling ecosystem of RISC-V software
and hardware. One of the domains explored by the RISC-V
community are processors with minimal area footprints. To
reduce the area footprint to the minimum, typically performance
is traded for a much more compact design. A promising approach
to realizing very small RISC-V processors is to base them on a
single instruction, such as SUBLEQ, and using a microcode layer.
However, the minimalism of SUBLEQ makes writing correct
microcode procedures challenging.

In this paper, we target the formal verification of SUBLEQ
microcode procedures. We present our verification framework
and show that we can handle complex SUBLEQ procedures
in practical times. In our experiments we consider a set of
SUBLEQ procedures which implements the RV32I ISA and
passes all official RISC-V compliance tests. However, based
on our approach we found 9 intricate bugs in the SUBLEQ
procedures.

I. INTRODUCTION

The potential of the free and open Instruction Set Architec-
ture (ISA) RISC-V [1] has been seen very early in research,
the open-source community and a few companies. The same is
now also true for big industry players, considering for instance
the recent move of Intel in joining the RISC-V foundation and
launching an innovation fund which will support chip designs
using the RISC-V ISA.

Besides the mentioned openness, major advantages of
RISC-V include its modularity, extensibility and the
community-driven ecosystem. Due to the implementation-
independent specification of the RISC-V ISA, RISC-V proces-
sors for targeting many use cases are developed, i.e. ranging
from high-performance to micro-controllers which are very
important for the IoT domain. In the latter, strict constraints
on energy-consumption and area are inevitable. To reduce the
area footprint to the minimum, typically performance is traded
for a much more compact design.

A very promising approach in this direction, and seen
from the Reduced Instruction Set Computer (RISC) paradigm
an extreme case, is an instruction set with a single in-
struction only. These are the so-called One Instruction Set
Computers (OISCs). On the lowest-level examples include
bit-manipulating architectures [2] which perform operations
such as bit-flipping or copying of individual bits and are
therefore complicated and difficult to develop. More practical
OISC architectures include transport-triggered architectures
that work using only the MOVE instruction. They perform

arithmetic, control flow, or other operations by writing to
special memory-mapped memory locations [3], [4].

An often used OISC instruction from the class of arithmetic-
based OISC instructions is SUbtract and Branch if Less than or
EQual to zero (SUBLEQ) [5]. While SUBLEQ is not as low-
level as the bit-manipulating instructions, it is still challenging
to write efficient and correct SUBLEQ procedures.

Recently, an OISC exploration platform including SUBLEQ
microcode procedures implementing the RISC-V ISA (more
precisely RV32I) has been presented in [6]. In addition,
multiple OISC hardware configurations have been evaluated in
terms of different standard software benchmarks. The RISC-V
compliance of the microcode procedures was checked by
running the official RISC-V test-suite consisting of more than
12,000 individual tests. However, this allows bug-hunting only
and not a proof of correctness for the microcode procedure
implementing a concrete RISC-V instruction.

In this paper, we present a formal verification framework
for SUBLEQ microcode implementing RV32I. Our framework
uses Rosette [7], [8], a solver-aided programming language.
Rosette extends Racket [9] which is a modern functional
programming language in the Lisp and Scheme family and
very well suited to implement ideas quickly. Rosette’s ex-
tensions include language constructs for program synthesis
and verification via symbolic variables, and expressing logical
constraints on those variables. Finally, these constraints can be
solved using Satisfiability Modulo Theories (SMT) solvers.

In our approach, we derive a formal execution model for
SUBLEQ microcode from a SUBLEQ Instruction Set Simula-
tor (ISS) created in Racket. First, we describe the extensions
required to make the ISS ”formal-verification ready” leverag-
ing Rosette. Then, we present the proposed formal verification
framework. In the last step, we create RISC-V specifications
for each RV32I instruction. All together this allows automated
formal verification, i.e. to prove the correctness of SUBLEQ
microcode procedures.

A particular challenge of microcode verification is that
many of the microcode procedures implementing the RV32I
instructions use loops. This makes formal reasoning hard since
these microcode procedures exhibit complex control flow that
requires a deep unrolling resulting in a non-trivial search
space. We propose two techniques to overcome this challenge:
With the first technique we optimize the microcode and with
the second we scale down the size of the bit-vectors without
sacrificing correctness.
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In the experiments we demonstrate the effectiveness of our
verification framework. Overall, we consider 37 SUBLEQ
microcode procedures from [6] implementing RV32I. In 9 of
the procedures we found intricate bugs that were not known
before.

Finally, we provide our formal model, the verification
framework and the SUBLEQ microcode as open-source on
GitHub1.

The paper is structured as follows: Section II discusses
related work. The preliminaries are given in Section III. The
proposed formal verification framework for SUBLEQ mi-
crocode is introduced in Section IV. Then, Section V provides
the experimental results. Finally, the paper is concluded in
Section VI.

II. RELATED WORK

Formal verification of processors has a very long history.
Important work goes back to 1989 published in [10], followed
by verification of pipelined control [11], handling of advanced
data-path operations [12], improving scalability [13], HW/SW
co-verification [14], [15], complete formal verification [16]–
[19], verification of security aspects like for instance transient
execution attacks [20] or memory protection [21], to just name
a few.

The particular focus on microcode verification has come
into focus in [22], [23]. The tool MicroFormal uses SAT/SMT
techniques for backward compatibility checks and assertion-
based verification. Another direction allowing to interconnect
RTL and microcode verification by including theorem proving
and SAT has been presented in [24]. Recent enhancements of
this work has been published in [25]. While our approach share
some conceptual similarities with the just mentioned works,
none of them targeted the formal verification of SUBLEQ
microcode implementing RV32I instructions.

Finally, we have to mention the Serval framework [26].
Serval uses Rosette and provides an extensible infrastructure
to create verifiers by lifting interpreters. The lifting principle is
somewhat similar to our approach of extending the SUBLEQ
ISS for formal verification in Rosette.

III. PRELIMINARIES

A. The SUBLEQ Instruction

Since it is quite intuitive, SUBLEQ is one of the best studied
OISC instructions.

The SUBLEQ instruction is a three-operand instruction,
performing a combined subtraction and branching operation.
The semantic of SUBLEQ A B C is as follows:

r ← reg[B]− reg[A]
reg[B] ← r

pc ←

{
pc+ C, if r ≤ 0

pc+ 1, otherwise

First, the result r is calculated by subtracting the register
value in A from the register value in B. The result is written
back in register B and a jump is performed depending on the

1https://github.com/ics-jku/riscv-subleq-verification

value of r: If r is smaller or equal to 0, C is added to the
SUBLEQ program counter, else the SUBLEQ program counter
is incremented by 1.

To ease the development of SUBLEQ procedures we imple-
mented a SUBLEQ file format and an assembler that translates
assembled SUBLEQ programs to multiple output formats,
e.g. Racket lists or Verilog memory dumps. This assembler
resolves jump labels to concrete offsets and also creates
definitions for the entry points of all SUBLEQ procedures. For
the JAL RISC-V instruction, we show a SUBLEQ procedure
in this format in the following example.

Example 1. Even though the SUBLEQ instruction only pro-
vides a way to subtract one number from another, complex
RISC-V instructions, such as JAL, can be implemented. List-
ing 1 shows the SUBLEQ procedure for the JAL instruction.
The jal rd, imm instruction performs a Jump And Link
operation, i.e. adding the immediate value imm to the current
program counter and storing the current program counter +4
in the destination register rd. At the start of the execution,
the JAL procedure expects the immediate value imm to be
present in SUBLEQ register IMM2. First, the procedure resets
the temporary registers TMP0 and TMP1 as well as the
result register RSLT to 0 by subtracting them from themselves
(Lines 2-4). Since this is a common operation in SUBLEQ
code, it can be abbreviated by writing just one register in a line
using our assembler. It is important to reset the registers since
they still can contain garbage data from previous procedures
which would corrupt the results of the current procedure.

The procedure first handles computing the link address
(RISC-V pc +4). For this, the current RISC-V program counter
in RVPC has to be copied to the RSLT register. To achieve this,
the RVPC is negated and written into TMP0 by subtracting it
from register TMP0 (which contains a 0 at this point, Line 5).
Next, the pc is negated again and copied into the RSLT register
(Line 6). Register NEXT contains the constant −4 which is
subtracted from the RSLT register to calculate the link address
(Line 7).

What remains now is to add the immediate value containing
the jump offset to the RISC-V pc. This is done similarly by first
negating the value and subtracting this negated value from
the RVPC register (Line 8). Since this is the last operation of
this procedure, the jump target is set to END which stops the
SUBLEQ execution (Line 9).

1 @JAL
2 TMP0 ; reset TMP0
3 TMP1 ; reset TMP1
4 RSLT ; reset RSLT
5 RVPC TMP0 ; -pc => TMP1
6 TMP0 RSLT ; pc => SRC2
7 NEXT RSLT ; add link address +4
8 IMM TMP1 ; negate IMM
9 TMP1 RVPC END ; PC - -TMP0 link1

Listing 1: SUBLEQ implementation of the JAL instruction

2This will be managed later by the RISC-V interface.



B. Rosette

Rosette [7], [8], [27] is a framework for designing solver-
aided domain-specific languages and an extension of Racket.
In practice, Rosette’s core verification part is a wrapper around
the SMT-LIB2 language, therefore most operations can be
easily translated to SMT-LIB2. In particular Rosette is typed
at runtime and, critically for this work, does not support
unbounded loops but only loops with a fixed bound (like the bit
length). Those loops are simply unfolded before querying an
underlying SMT solver. Currently, Rosette supports the three
solvers Z3 [28], CVC4 [29], and Boolector [30]. Rosette trans-
lates assertions and assumptions to constraints and passes them
to the SMT solver which is able to identify counterexamples
or prove that the assertions hold.

IV. SUBLEQ FORMAL VERIFICATION FRAMEWORK

This section introduces the formal microcode verification
framework. First, Section IV-A describes the verification set-
ting in terms of executing SUBLEQ microcode for RISC-V
instructions. Second, Section IV-B introduces the RISC-V In-
terface which acts as an abstraction layer above the hardware.
Section IV-C introduces the ISS which serves as the base for
our formal model. Section IV-D describes the extensions to
the ISS which lead to the formal model of the framework.
Section IV-E shows how RISC-V instructions can be specified
in our framework. Finally, Section IV-F presents techniques
that reduce the verification runtime.

A. Verification Setting

For the verification of SUBLEQ procedures we make some
assumptions about the hardware on which the microcode runs.
First, we target an RV32I configuration with 32-bit word size
and support for the basic I extension of RISC-V (integer in-
structions). Second, the hardware on which the microcode runs
handles some RISC-V specific operations such as decoding
RISC-V instructions and passing the correct arguments to the
SUBLEQ procedures. We assume that the hardware imple-
menting these operations, which is called RISC-V Interface,
and which is presented in Section IV-B, is correct. Hence,
we are only verifying the SUBLEQ microcode procedures
themselves. Consequently, our specifications assume that the
correct arguments are present in the SUBLEQ registers and
the SUBLEQ program counter is set to the start of the correct
SUBLEQ procedure. The verification of a RISC-V Interface
implementation remains for future work.

B. The RISC-V Interface as an Abstraction Layer

The RISC-V Interface handles RISC-V related operations
such as decoding instructions or extending immediate values.
By this, an abstraction layer is provided that handles operations
that would be very hard to implement purely in SUBLEQ mi-
crocode. Additionally, the RISC-V Interface makes SUBLEQ
code portable between different hardware implementations.

The SUBLEQ instructions can only access 16 microcode
registers (which will be presented in Section IV-C2) and can
not access the RISC-V registers or the main memory. This is

Algorithm 1 Microcoded RISC-V Execution Cycle
loop

instr ← mem[rvpc]
decode(instr)
subleq-regs ← decoded-arguments
while not subleq-done do

run subleq
riscv-regs[decoded-rd] ← subleq-result
if isLoad(instr) then

riscv-regs ← mem[result]
else if isStore(instr) then

mem[result] ← riscv-regs

instead done by the RISC-V Interface in the execution loop
shown in Algorithm 1. First, the RISC-V Interface fetches
and decodes a RISC-V instruction and places the instruction
arguments in the SUBLEQ registers. Then, the SUBLEQ
program counter is set to point to the SUBLEQ procedure
implementing the decoded RISC-V instruction and the control
is handed over to the SUBLEQ procedure. After the SUBLEQ
procedure signals termination, the RISC-V Interface reads the
result from the SUBLEQ registers and writes it to the correct
RISC-V destination register. Finally, load and store operations
are executed (if necessary) and the loop starts over with the
next RISC-V instruction.

C. SUBLEQ ISS

Our formal verification framework is based on a SUBLEQ
ISS written in the Racket programming language. The
SUBLEQ ISA is extremely minimal, therefore the Racket
ISS consists of just a single function (step, Listing 2) that
totals about 30 lines of code which implements the SUBLEQ
specification from Section III-A. Please note, that Listing 2
also contains some of the extensions to derive the formal
model which we describe below in Section IV-D. These
extensions are not part of the ISS and are highlighted using
red color.

1) Step Function: The (step pc regs code) function
fetches one SUBLEQ instruction at position pc from the
microcode in code (Line 4). Please note, that Rackets
(list-ref xs i) function returns the i'th element from
list xs. Next, the src1, src2, and jump components of the
instruction are extracted from the previously fetched SUBLEQ
instruction (Lines 5-9). With the register addresses decoded,
the values are read from the registers addressed by src1, and
src2 (Lines 10-15). At this point, the values are sign extended
to XLEN + 1 bits to overcome overflow errors which can
impact the correctness of the SUBLEQ procedures [6]. The
constant XLEN specifies the register bit-width of all regis-
ters and arithmetic operations. We verify RV32I instructions
therefore XLEN is 32. However, we later show how XLEN
can be adjusted to decrease the verification runtime of long-
running SUBLEQ procedures. The main part of the SUBLEQ
instruction, the subtraction, is implemented in Line 16. Next,
the result is written back into the registers (Lines 18-22).
The step function is implemented as a pure function without



side effects. Therefore, a new list of registers new-regs

is constructed which is identical to the list regs except
in the place src2 which holds the result of the subtraction.
Racket’s for/list function implements a for each loop with
the addition that this function returns a list containing the
results of all loop iterations. Subsequently, the next program
counter is calculated in Lines 24-27. The bvsle function
performs a signed less-or-equal operation on the bitvector
arguments. Finally, the step function is called recursively
with the previously computed new pc and register values
(Line 30). However, if the end of the procedure is reached,
which is indicated by the EXIT constant in the jump offset
(Line 29), the resulting register values in new-regs are
returned (Line 31) and the SUBELQ execution stops.
1 (define ( s t e p fuel pc r e g s code )
2 (cond [(= fuel 0) ”unrolling depth too small”]
3 [else
4 (define i n s t r ( l i s t − r e f − b v code pc ) )
5 (define s r c 1 ( e x t r a c t 15 12 i n s t r ) )
6 (define s r c 2 ( e x t r a c t 11 8 i n s t r ) )
7 (define jump
8 ( s i g n − e x t e n d ( e x t r a c t 7 0 i n s t r )
9 ( b i t v e c t o r 9 ) ) )

10 (define v a l 1
11 ( s i g n − e x t e n d ( l i s t − r e f − b v r e g s s r c 1 )
12 ( b i t v e c t o r (+ 1 XLEN) ) ) )
13 (define v a l 2
14 ( s i g n − e x t e n d ( l i s t − r e f − b v r e g s s r c 2 )
15 ( b i t v e c t o r (+ 1 XLEN) ) ) )
16 (define r e s ( bvsub v a l 2 v a l 1 ) )
17
18 (define new−regs
19 ( f o r / l i s t [ ( i n d e x ( r a n g e 16) ) ]
20 (if ( bveq ( i n t e g e r −>b i t v e c t o r i n d e x

( b i t v e c t o r 4 ) ) s r c 2 )
21 ( e x t r a c t (− XLEN 1) 0 r e s )
22 (list-ref r e g s i n d e x ) ) ) )
23
24 (define new−pc
25 (if ( b v s l e r e s ( bv 0 (+ 1 XLEN) ) )
26 (bvadd pc jump )
27 (bvadd pc ( bv 1 9) ) ) )
28
29 (if ( bveq jump EXIT )
30 new−regs
31 ( s t e p (- fuel 1) new−pc new−regs code ) ) ]) )

Listing 2: Step function of the verification ready model

2) SUBLEQ Registers: SUBLEQ instructions can access
16 SUBLEQ registers. Table I lists all 16 SUBLEQ registers
which contain the arguments to the procedure as well as space
for temporary variables and some constant values required by
the SUBLEQ procedures. The registers can be grouped into
four categories: (1) operands for passing the RISC-V operands,
(2) temporary registers, (3) constants that store frequently
needed values, such as −1 (in register INC) to increment
by one, or −4 (in register NEXT) to increment the RISC-V
program counter, and (4) functional registers for additional
hardware support of specific operations. Our microcode uses
no special hardware functions, so these registers serve as two
additional temporary registers.

D. Formal SUBLEQ Execution Model

This section describes the ISS extensions which we intro-
duced to obtain the formal model. These extensions include the
usage of symbolic input values (Section IV-D1), assumptions

TABLE I: The 16 SUBLEQ registers visible to the microcode

Operands Temporary Constants Functional

SRC1 TMP0 ONE FUNC0/TMP6
SRC2/RSLT TMP1 TWO FUNC1/TMP7
IMM TMP2 WORD

TMP3 INC
TMP4 NEXT
TMP5

on the input values (Section IV-D2), and the inclusion of a
maximum unroll depth of the model (Section IV-D3).

1) Symbolic Input: The first extension to the ISS concerns
the input values which are the initial register contents. While
the registers contain concrete values in an ISS use case,
they must contain symbolic values in a formal setting. List-
ing 3 showcases how symbolic registers can be created using
Rosette’s define-symbolic function. In our model, the
register file is implemented as a list of registers. Therefore, the
symbolic variables are created with the define-symbolic

function (Lines 1-2) before they are inserted into a list
(Lines 4-5).
1 ( d e f i n e − s y m b o l i c
2 val−tmp0 v a l − r v p c . . . va l−tmp7 ( b i t v e c t o r XLEN) )
3
4 (define i n i t − r e g s
5 ( l i s t va l−tmp0 v a l − r v p c . . . va l−tmp7 ) )

Listing 3: Initialization of the symbolic registers

2) Constant Assumption: Since all registers are symbolic
variables we must make sure that the variables for the con-
stants (e.g. INC or NEXT) always contain the correct values.
Therefore, we use the Rosette’s assume function to force the
register values to take the constant values at the very start of
the model before the first call to step. The assume function
reduces the search space by dropping all variable assignments
that violate the assumptions. Listing 4 shows the call to
Rosette’s assume function to initialize the correct constants
in the initial register values. REG-ONE, REG-WORD, REG-INC,
and REG-NEXT are definitions of the internal register numbers
for the registers ONE, WORD, INC, and NEXT respectively. The
assumption condition is a conjunction of multiple equivalence
checks (via Racket’s eq? comparison function) each testing if
the register holds the correct value. Since we use Rosette on
problems with bounded arithmetic, the values are specified
using the (bv v w) function. This function constructs a
bitvector representation of value v using w bits.
1 ( assume
2 (and
3 (eq? (list-ref i n i t − r e g s REG−ONE) ( bv 1 XLEN) )
4 (eq? (list-ref i n i t − r e g s REG−WORD) ( bv (− XLEN 1)

XLEN) )
5 (eq? (list-ref i n i t − r e g s REG−INC) ( bv −1 XLEN) )
6 (eq? (list-ref i n i t − r e g s REG−NEXT) ( bv −4 XLEN) ) ) )

Listing 4: The constant registers are set using the Rosettes
assume function

3) Unroll depth: During formal verification the model is
unrolled depending on the number of executed SUBLEQ



instructions. Rosette does not support unbounded loops and
unbounded recursion, therefore we have to explicitly specify
the maximum number of unrollings. This unroll depth is one
of the major factors for the verification runtime. Therefore,
minimizing the unroll depth is of utmost importance. Since
we know the worst case run-times of all SUBLEQ procedures
an upper bound for the unroll depth can be determined. We
integrate this unroll depth into the model by providing an
additional argument fuel (Line 1 in Listing 2). In other words,
this argument specifies how many SUBLEQ instructions can
still be executed until the result of the specified RISC-V
instruction is placed in the RSLT register. At each recursive
call to step the fuel argument is decremented. If the initial
fuel parameter was chosen too small, the procedure terminates
with a respective error message (Line 2 in Listing 2) since the
SUBLEQ microcode procedure did not meet the specification
of the RISC-V instruction at hand. Now, the model is ready
to be used for verification with Rosette. The last remaining
piece to a full verification setup are the RISC-V specifications
which we will describe in the following section.

E. RISC-V Specifications

To formally capture the specification of each RISC-V in-
struction we have defined the macro rv-verify. This macro
generates Racket code which handles the formal verification,
verification runtime measurement, and the concrete execution
of models, if a model is found. Listing 5 shows how the
rv-verify macro is used for the JAL RISC-V instruction.
Before we discuss the concrete definitions for JAL, we explain
the general meaning of the 7 parameters used in the macro and
the general task of the macro in the following.

1) rv-verify parameters:
Name The name of the RISC-V instruction which

is implemented by the SUBLEQ microcode
procedure.

PC The microcode program counter for fetching
the first SUBLEQ instruction of the RISC-V
instruction at hand.

Fuel The maximum number of unrollings.
Microcode The microcode containing all SUBLEQ in-

structions.
Solver The SMT solver used during verification.
Spec The specification of the RISC-V instruction

which defines the functional behavior that
must hold on all valid inputs. For branching
operations, the only specification is the correct
adaption of the program counter (pc+offset in
case of a jump, pc+4 otherwise). For other
instructions, it ensures that the result of a
calculation is correct and stored in the right
register. The registers for pc and the result
are the SUBLEQ registers RVPC and RSLT,
respectively. For both the position in the mem-
ory is known and therefore we can access their
content via the respective named index (see
Line 9 and Line 11).

Assumptions Assumptions that restrict valid inputs for some
instructions. For example, the shift amount for
shifting instructions is limited to 5 bits (≤ 31).

2) rv-verify general task: Our rv-verify macro is
responsible for executing the respective SUBLEQ instruction,
printing the result after execution, verifying that the speci-
fication holds, and providing information about the runtime
of the verification. The specification and assumptions have to
be passed in a lambda expression as they would otherwise be
evaluated immediately (Line 8-16). This immediate evaluation
is not possible as both refer to register values after execution
which are not known to the macro at the time of definition. The
macro first symbolically executes the instructions starting at
the defined program counter, and saves the resulting state of all
registers. The selected SMT solver then tries to find concrete
values for the defined symbolic constants which would lead
to a violation of the specification. If no such counterexample
is found, the correctness is proven and the function finally
returns OK and the runtime for the verification. Otherwise, it
returns a model, which consists of the register values that led
to a wrong result after executing the instructions, and prints
the incorrect output.

3) rv-verify for JAL: Listing 5 shows the specification
for SUBLEQ procedure of the RISC-V instruction JAL. As
it is a J-Type instruction, the program counter needs to be
adjusted by the offset to the instruction that should be exe-
cuted next (RVPC=RVPC+IMM), and the previous program
counter gets incremented by 4 and written into the destination
register RSLT. For this specification we assume in Line 13 that
the JAL instruction gets a valid value for the program count,
namely 2-bit aligned (lowest two bits are 0). All registers
contain bitvectors; therefore the behavior of the addition is
defined with bvadd, one of Rosette’s bitvector operations.
The equality of the content of the RSLT register and the
desired result is checked using the eq? predicate, which
returns true if two values or their contents are equal.
1 ( r v − v e r i f y
2 #:name ”JAL”
3 #:init-pc JAL−PC
4 #:fuel 20
5 #:microcode microcode
6 #:solver ( b o o l e c t o r )
7 #:spec
8 (lambda ( r e s )
9 (and (eq? (list-ref r e s REG−RVPC)

10 (bvadd v a l − r v p c val−immi ) )
11 (eq? (list-ref r e s REG−RSLT)
12 (bvadd v a l − r v p c ( bv 4 XLEN) ) ) ) )
13 #:assumptions
14 (lambda ( r e s )
15 ( assume (eq? ( bv 0 2)
16 ( e x t r a c t 1 0 (list-ref r e s 1 ) ) ) ) ) )

Listing 5: Full specification of the JAL instruction

F. Optimization Techniques

A large part of the RV32I instructions can be formally
verified with our framework. By using a formal approach,
we were able to identify microcode bugs which were not
uncovered by testing and the RISC-V architectural test suite.
However, some procedures showed runtimes of much more



than 12 hours which we set as time limit. For these procedures
we had to introduce special optimizations to make them
complete in under 12 hours.

1) Microcode Optimization: The procedures with long run-
times are exclusively procedures that have internal loops that
lead to very deep unroll depths. Especially the number of
instructions inside the internal loops of microcode procedures
contributes to the required unroll depth. Minimizing the num-
ber of instructions inside those internal loops is especially
effective since they are multiplied by the XLEN and thus
even one instruction less reduces the unroll depth by up to
32. Therefore, as a first measure to reducing the verification
runtime, we spend significant effort in optimizing the proce-
dures. For some instructions, we were able to remove more
than 10 instructions which, assuming XLEN = 32, reduces
the required unroll-depth already by ≥ 320.

2) Register Bit-Width: All procedures that can not be
verified given our time limit share the property that their
unrolling depth depends on the bit-width of the registers. For
example, logical operations such as XOR have to perform
multiple SUBLEQ instructions in a loop for each register
bit. Therefore, decreasing the bit-width (XLEN) of the formal
model directly reduces the required unroll depth. By this, we
were able to verify the AND, OR, and XOR instructions and
their immediate counterparts.

We argue that in the case of these logical instructions all
bits are independent. Therefore, instead of proving correctness
for 32 bits we can safely scale down the size of the bitvectors.

V. VERIFICATION RESULTS

In this section, we present the results for formal veri-
fication of SUBLEQ procedures implementing RV32I. Our
experiments have been carried out on an Intel Core i7-10700
with 64 GB of main memory. For SMT-solving we used
Boolector [30] with the timeout set to 12 hours (43,200
seconds).

In the following, we evaluate the verification runtime of
all microcode procedures (Section V-A), describe one found
bug in detail (Section V-B), and analyze how the verification
runtime scales with increasing word lengths (Section V-C).

A. Overall Results

Table II shows the verification results for all RISC-V
instructions. Column Instruction provides the name of the
RISC-V instruction that is implemented by the corresponding
SUBLEQ procedure. Please note that one SUBLEQ procedure
can implement multiple RISC-V instructions, e.g. the mi-
crocode for ADD and ADDI is the same as the only difference
is that the second source is either the RISC-V register rs2 or
the immediate imm which is handled by the RISC-V Interface
by making the respective value in both cases available in the
SUBLEQ register IMM. Column #SUBLEQ Instrs gives the
number of SUBLEQ instructions needed to implement the
RISC-V instruction. Then, Column Unrolling depth reports
how often we had to unroll the step function for the proof.

TABLE II: Verification results for all RISC-V instructions

Instruction #SUBLEQ Unroll depth Result Runtime
Instrs (s)

LB 4 4 Pass 0.02
LH 4 4 Pass 0.02
LW 4 4 Pass 0.02
LBU 4 4 Pass 0.02
LHU 4 4 Pass 0.02
SB 4 4 Pass 0.02
SH 4 4 Pass 0.02
SW 4 4 Pass 0.02
LUI 4 4 Pass 0.02
ADD 4 4 Pass 0.02
ADDI 4 4 Pass 0.02
SUB 6 6 Pass 0.04
AUIPC 8 8 Pass 0.02
JAL 8 8 Pass 0.03
JALR 16 16 Fail 0.03
BEQ 11 11 Pass 2.76
BNE 11 11 Pass 2.30
BLT 6 6 Pass 3.79
BGE 5 5 Pass 4.35
BLTU 20 485 Fail 1,163.00
BGEU 28 617 Fail 1.26
SLT 6 6 Pass 2.07
SLTI 6 6 Pass 2.07
SLTU 29 618 Fail 165.26
SLTIU 29 618 Fail 165.26
XOR∗ 26 314 Pass 15,183.00
XORI∗ 26 314 Pass 15,183.00
OR∗ 25 297 Pass 13,107.00
ORI∗ 25 297 Pass 13,107.00
AND† 24 234 Pass 41,352.00
ANDI† 24 234 Pass 41,352.00
SLL 8 132 Pass 280.00
SLLI 8 132 Pass 280.00
SRL 23 550 Fail 14.84
SRLI 23 550 Fail 14.84
SRA 28 555 Fail 14.84
SRAI 28 555 Fail 14.84

* XLEN=17 † XLEN=15

Some SUBLEQ procedures are loop-free (e.g. ADDI or
BLT) therefore the model has to be unrolled exactly as
many times as the number of SUBELQ instructions in the
corresponding microcode procedure. Other instructions are
more complex and must be implemented using loops in the
SUBLEQ procedure (e.g. XORI or SLL). For these procedures
the number of unrollings must be individually calculated. For
example, the XORI instruction consists of 7 initial instruc-
tions that are always executed just once followed by a loop
consisting of 18 instructions. The loop is executed for each bit
of the arguments (i.e. XLEN times). After the loop, a single
instruction which increments the RISC-V program counter
is always executed. Overall, the maximum unroll-depth for
XLEN = 32 is therefore 8+18∗XLEN = 8∗18∗32 = 584.

The verification result is provided in Column Result and the
runtime in seconds is reported in Column Runtime. Finally,
instructions for which we had to scale down the size of the
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bitvectors to get practical runtimes are marked by * and †. For
example, since operations on single bits (e.g. logical and) are
hard to implement using SUBLEQ instructions only, we had
to reduce the bit-width for the AND(I), OR(I), and XOR(I)
procedures. This reduced the required depth for unrolling
significantly.

Overall, as can be seen we were able to prove the correct-
ness of SUBLEQ microcode procedures for the majority of
the RV32I instructions (28 out of 37). However, for 9 RISC-
V instructions the corresponding SUBLEQ procedures were
buggy.

B. Example Bug

One of the bugs we found using our framework concerns
the correctness of the JALR instruction. This instruction adds
an immediate to the source register, then has to clear the LSB
of the sum, and then jumps to the resulting address. However,
our SUBLEQ microcode procedure for JALR does not set the
LSB to zero and thus invalid program counter values can be
reached. The problem occurs when the sum of the source
register and the immediate value is odd, which is possible
since JALR uses the I immediate type and the source register
can also hold odd values.

C. Effect of Word Lengths

Fig. 1 shows the runtimes for verifying the SUBLEQ
procedures implementing AND(I), OR(I), XOR(I), and SLL
for various word lengths (i.e. XLEN values). As can be seen,
AND(I), OR(I), and XOR(I) show exponential runtimes with
increasing XLEN. Starting from around XLEN = 10 the
runtime is increasing significantly for these two microcode
procedures with AND(I) reaching runtimes of multiple hours
from XLEN = 13 on. SLL on the other hand scales much
better with the full XLEN = 32 verification taking only
237 seconds. Please note, the runtime differences between the
logical and instruction AND(I) and the other two instructions

XOR(I) and OR(I). Despite nearly identical unroll depths the
runtime of AND(I) scales much worse than XOR(I) and OR(I).

VI. CONCLUSION

In this paper, we presented a verification framework for
SUBLEQ microcode procedures implementing the RV32I ISA;
the microcode procedures together with an OISC exploration
platform have been introduced in [6]. We created our formal
model for SUBLEQ procedures in Rosette, a solver-aided
programming language. This allowed us to extend an already
existing ISS for SUBLEQ procedures with constraints captur-
ing (a) the execution of a single SUBLEQ instruction sym-
bolically and (b) the formalization of the RISC-V instruction
specifications in terms of lambda-based macros. Moreover, we
presented two techniques to tackle the verification complex-
ity of long-running microcode procedures. Our methodology
uncovered multiple microcode bugs which were not found by
official RISC-V compliance tests.

In future work, we plan to investigate different SMT solvers
as well as advanced techniques such as predicate abstraction.
Moreover, we are working on an FPGA-core which imple-
ments the RISC-V interface and runs the verified SUBLEQ
microcode. For the full verification of the core we will leverage
novel approaches such as [31] and we will analyze different
metrics using [32], [33].
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